HAEF IB – FURTHER MATH HL TEST

CALCULUS

by Christos Nikolaidis

Name:_____

Questions

1. [Maximum mark: 10]

(a) The Cartesian equation of the unit circle is given by $x^2 + y^2 = 1$. Show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{x}{y}$$
[2]

(b) Consider now the differential equation

 $\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{x}{y}$ with y = 1 when x = 0

Show that the solution is the unit circle given above

(ii) by letting
$$u = \frac{y}{x}$$
 and solving it as a homogeneous differential equation. [6]

2. [Maximum mark: 12]

Consider the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{x}{y}$$
 with $y = 1$ when $x = 0$

(a) Show that
$$\frac{d^2 y}{dx^2} = -\frac{x^2 + y^2}{y^3}$$
 by using implicit differentiation. [3]

- (b) Hence find the Maclaurin series of the solution up to and including the x^2 term. [2] Use the series in (b) to find an approximation for y when x = 0.5 [1]
- (c) For the same differential equation use Euler's method with step value h = 0.1to obtain an approximation for *y* when x = 0.5.
- (d) The exact solution of the differential equation is the unit circle $x^2 + y^2 = 1$. Find the errors of the approximation in (b) and (c) given that y > 0. [2]

[4]

3. [Maximum mark: 7]

Consider the differential equation

(a) On your diagram sketch the isoclines $-\frac{x}{y} = c$ for c = -1, 1. [2]

- (b) Sketch the slope field on the same diagram (ignore the origin (0,0)). [3]
- (c) On the slope field sketch the solution that passes through the point (0,1). [2]

4. [Maximum mark: 8]

Consider the infinite power series $\sum_{n=1}^{\infty} \frac{x^n}{7^n n^7}$

- (a) Find the **radius** of convergence. [4]
- (b) Find the interval of convergence.
- (c) Hence find the interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{(x-2017)^n}{7^n n^7}.$ [1]

5. [Maximum mark: 5]

Find the derivatives of the following functions with respect to x

(a)
$$\int_{2017}^{4} \frac{1}{t^4 + 1} dt$$
. [1]

(b)
$$\int_{\sqrt{x}}^{x} \frac{1}{t^4 + 1} dt$$
. [4]

- 6. [Maximum mark: 8]
 - (a) Use the **mean value theorem** for $f(x) = \ln x$ in the interval [1, x] to show that

$$(\ln x) + 1 < x$$
, for $x > 1$ [4]

[3]

- (b) By using a similar argument show that the same inequality holds for 0 < x < 1. [3]
- (c) Deduce that

$$(\ln x) + 1 \le x$$
, for any $x > 0$ [1]