FURTHER MATH HL TEST IN MATRICES - VECTOR SPACES Date: 23 October 2018 by Christos Nikolaidis **Section A: Without GDC** | | Name: Marks: /50 | | |----|---|-----| | | | | | | Questions | | | 1. | [Maximum mark: 6] | | | | Consider the matrix $A = \begin{pmatrix} k & 1 & 1 \\ k & 2 & k-1 \\ k & 0 & k-2 \end{pmatrix}$ | | | | (a) Find the value of k for which $A^T - A = O$. | [2] | | | (b) Find all possible values of k for which the matrix is not invertible. | [4] | #### 2. [Maximum mark: 8] Matrices A, B and C are defined as $A = \begin{pmatrix} 1 & 5 & 1 \\ 3 & -1 & 3 \\ -9 & 3 & 7 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 2 & -1 \\ 3 & -1 & 0 \\ 0 & 3 & 1 \end{pmatrix}$, $C = \begin{pmatrix} 8 \\ 0 \\ -4 \end{pmatrix}$. (a) Given that $$AB = \begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{pmatrix}$$, find a . [1] - (b) Hence, or otherwise, find A^{-1} . [2] - (c) Find the matrix X, such that AX = C. [3] - (d) Find the matrix X, such that $XA^{-1} = C^{T}$. [2] |
 |
 | |------|------| |
 |
 | | | | _ | | | ~- | |----|----------|-------|----| | 3. | [Maximum | mark: | 61 | Show that the vectors $$\begin{pmatrix} x \\ y \\ z \end{pmatrix}$$ that satisfy the equation $$2x + 3y + 5z = 0$$ form a subspace of R^3 of dimension 2. ## 4. [Maximum mark: 12] (a) Show that for any matrix A such that $A^3 = \mathbf{O}$ the inverse of I - A is $I + A + A^2$ [3] Let $$A = \begin{pmatrix} 0 & x & y \\ 0 & 0 & z \\ 0 & 0 & 0 \end{pmatrix}$$ - (b) Find A^2 and A^3 [2] - (c) Hence find the inverse of $\begin{pmatrix} 1 & -x & -y \\ 0 & 1 & -z \\ 0 & 0 & 1 \end{pmatrix}$ [3] - (d) Find the 3x3 matrix X such that X = A + AX [4] | |
 | • • | | | | |
 |
 | | |---|------|-----|-----|----|----|---|------|------|--| | |
 | | • • | | | |
 |
 | | | |
 | • • | • • | | | |
 |
 | | | |
 | • • | | | | |
 |
 | | | | | | | | | |
 |
 | | | |
 | | | | | |
 |
 | | | | | | | | | |
 |
 | | | | | | | | | |
 |
 | | | | | | | | | |
 |
 | | | | | | | | | |
 |
 | | | | | | | | | |
 |
 | | | | | | | ٠. | | |
 |
 | | | | | | | | ٠. | |
 |
 | | | | | | | ٠. | ٠. | |
 |
 | | | | | | | | | |
 |
 | | | | | | | | | |
 |
 | | | | | | | | | |
 |
 | | | | | | | | | |
 |
 | | | | | | | | ٠. | |
 |
 | | | | | | | | | |
 | | | | | | | | | | |
 |
 | | | | | | | | | |
 |
 | | | | | | | | ٠. | |
 |
 | | | | | | • | • | | | | | | | | | | | | | |
 |
 | | | | | | | | | |
 |
 | | | | | | | | ٠. | |
 |
 | | | - | | | - | • | - | - | | | | | | | | | | | |
 |
 | | | | | | | | | |
 |
 | | | | | | | | | |
 |
 | | | | | | | | | |
 |
 | | | | | | | | | |
 |
 | | | | | | | ٠. | | |
 |
 | | | |
 | • | | | | |
 |
 | | | |
 | | | | | |
 |
 | | | |
 | | | | | |
 |
 | | | |
 | | | | | |
 |
 | | | |
 | | | | | |
 |
 | | | |
 | | | | | |
 |
 | 5. | [Maximum mark: 12] | | | | | |----|--------------------|---|-----|--|--| | | Consid | der the system of linear equations | | | | | | where | $x + 2y + z = 3$ $-x + 2y + 3z = 1$ $-2x + y + (a + 2)z = k$ $a \in \mathbb{R}.$ | | | | | | (a) | Given that $a=0$,
(i) show that the system has a unique solution
(ii) find the unique solution in terms of k . | [5] | | | | | (b) | Find the values of a and k for which the system is inconsistent. | [3] | | | | | (c) | Given that the system has infinitely many solutions, | | | | | | | (i) find the values of a and k(ii) find general solution of the system. | [4] | | | | | | | | | | | | | | | | | | [Maximum mark: 6] | | | | |---|--------------------|--------------------------------------|--------------| | Let u and v are linearly independent | vectors of R^n . | | | | (a) Show that $2u + 3v$ is a linearly ind | ependent vector | | [2] | | (b) For a vector $w \in R^n$, prove that | | | | | u, v , w are linearly dependent | if and only if | w is a linear combination of u are | nd v . [4] | ## **Section B: With GDC** | | Name | : Marks: /50 | | |----|--------|--|-----| | | | | | | | | Questions | | | 7. | [Maxim | num mark: 5] | | | | (a) | Define the terms null space and nullity for a $m \times n$ matrix A . | [2] | | | (b) | Show that | | | | (5) | the nullity of A is equal to the nullity of A^T if and only if A is a square matrix. | [3] | | | | | , | | | | | | | | | | , | 8. [Maximum mark: 5] Let $$u = \begin{pmatrix} 2 \\ 3 \\ 5 \end{pmatrix}$$ and $v = \begin{pmatrix} 1 \\ 5 \\ -1 \end{pmatrix}$. - (a) Show that u and v are linearly independent, by using the definition. [3] - (b) Express $w = \begin{pmatrix} 7 \\ 0 \\ 28 \end{pmatrix}$ as a linear combination of u and v. [2] |
 |
 | |------|------| |
 |
 | | | | | | | |
 |
 | | ^ | FR 4 : | | - 1 | |----|----------|-------|------------| | 9. | [Maximum | mark: | ગ | Let $$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$ | (a) | Find $det(A-I)$ | [1] | |-----|-----------------|-----| | (α) | | L'J | | (b) | Solve the equation $XA - A = X$ | [4] | |-----|---------------------------------|-----| | (2) | CONTO UNO OQUALIONI 7111 71 71 | F.3 | #### 10. [Maximum mark: 10] It is given that $V_1 = \{ \begin{pmatrix} x \\ y \\ 0 \end{pmatrix} | x, y \in R \}$ is a subspace of R^3 . | | | (a+2b) | | | |-----|----------------------|--------|---|-----| | (a) | Show that $V_2 = \{$ | а | $ a, b \in R $ is also a subspace of R^3 . | [4] | | | | b | | | - (c) Describe the subspace $V_1 \cap V_2$ and find its dimension. [2] - (d) Show that $V_1 \cup V_2$ is **not** a subspace of R^3 . [2] |
 |
 | |------|------| |
 |
 | | | | | | | | | | | | # **11.** [Maximum mark: 10] Let $$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \\ 5 & 5 & 5 & 0 \end{pmatrix}$$ | (a) | Explain why the columns of A are linearly dependent . | [1] | |-----|---|-----| | (b) | Find the rank of A . | [2] | | (c) | Deduce a conclusion for the rows of $\it A$. | [1] | | (d) | Find the column space of A in the simplest form. | [1] | | | (2) | | | (e) | Find all vectors $X \in \mathbb{R}^4$ such that $AX = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$ | [3] | | | (3) | | | (f) Find all row vectors Y such that $YA^T = \begin{pmatrix} 2 & 2 & 3 \end{pmatrix}$ | [2 | |---|----| |---|----| |
 | | |------|--| |
 | | |
 | | | | | |
 | | | | | |
 | | |
 | | **12.** [Maximum mark: 15] Let $$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$ and $B = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$. - (a) Given that $X = B A^{-1}$ and $Y = B^{-1} A$ - (i) find X and Y; - (ii) does $X^{-1} + Y^{-1}$ have an inverse? Justify your conclusion. [4] - (b) Prove by induction that $A^n = \begin{pmatrix} 1 & n & \frac{n(n+1)}{2} \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix}$, for $n \in \mathbb{Z}^+$. [6] - (c) Given that $(A^n)^{-1} = \begin{pmatrix} 1 & x & y \\ 0 & 1 & x \\ 0 & 0 & 1 \end{pmatrix}$, for $n \in \mathbb{Z}^+$, - (i) find x and y in terms of n, - (ii) hence find an expression for $A^n + (A^n)^{-1}$ [5] |
 | |------| |
 | | | | | | | | | | | | | | | |