FURTHER MATH HL TEST IN MATRICES - VECTOR SPACES

Date: 23 October 2018 by Christos Nikolaidis

Section A: Without GDC

	Name: Marks: /50	
	Questions	
1.	[Maximum mark: 6]	
	Consider the matrix $A = \begin{pmatrix} k & 1 & 1 \\ k & 2 & k-1 \\ k & 0 & k-2 \end{pmatrix}$	
	(a) Find the value of k for which $A^T - A = O$.	[2]
	(b) Find all possible values of k for which the matrix is not invertible.	[4]

2. [Maximum mark: 8]

Matrices A, B and C are defined as $A = \begin{pmatrix} 1 & 5 & 1 \\ 3 & -1 & 3 \\ -9 & 3 & 7 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 2 & -1 \\ 3 & -1 & 0 \\ 0 & 3 & 1 \end{pmatrix}$, $C = \begin{pmatrix} 8 \\ 0 \\ -4 \end{pmatrix}$.

(a) Given that
$$AB = \begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{pmatrix}$$
, find a . [1]

- (b) Hence, or otherwise, find A^{-1} . [2]
- (c) Find the matrix X, such that AX = C. [3]
- (d) Find the matrix X, such that $XA^{-1} = C^{T}$. [2]

_			~-
3.	[Maximum	mark:	61

Show that the vectors
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 that satisfy the equation

$$2x + 3y + 5z = 0$$

form a subspace of R^3 of dimension 2.

4. [Maximum mark: 12]

(a) Show that for any matrix A such that $A^3 = \mathbf{O}$ the inverse of I - A is $I + A + A^2$ [3]

Let
$$A = \begin{pmatrix} 0 & x & y \\ 0 & 0 & z \\ 0 & 0 & 0 \end{pmatrix}$$

- (b) Find A^2 and A^3 [2]
- (c) Hence find the inverse of $\begin{pmatrix} 1 & -x & -y \\ 0 & 1 & -z \\ 0 & 0 & 1 \end{pmatrix}$ [3]
- (d) Find the 3x3 matrix X such that X = A + AX [4]

	 	• •					 	 	
	 		• •				 	 	
	 	• •	• •				 	 	
	 	• •					 	 	
				٠.			 	 	
					٠.		 	 	
				٠.	٠.		 	 	
					٠.		 	 	
					٠.		 	 	
			•	•					
					٠.		 	 	
-			-	•	-	-			
				٠.			 	 	
	 	•					 	 	

5.	[Maximum mark: 12]				
	Consid	der the system of linear equations			
	where	$x + 2y + z = 3$ $-x + 2y + 3z = 1$ $-2x + y + (a + 2)z = k$ $a \in \mathbb{R}.$			
	(a)	Given that $a=0$, (i) show that the system has a unique solution (ii) find the unique solution in terms of k .	[5]		
	(b)	Find the values of a and k for which the system is inconsistent.	[3]		
	(c)	Given that the system has infinitely many solutions,			
		(i) find the values of a and k(ii) find general solution of the system.	[4]		

[Maximum mark: 6]			
Let u and v are linearly independent	vectors of R^n .		
(a) Show that $2u + 3v$ is a linearly ind	ependent vector		[2]
(b) For a vector $w \in R^n$, prove that			
u, v , w are linearly dependent	if and only if	w is a linear combination of u are	nd v . [4]

Section B: With GDC

	Name	: Marks: /50	
		Questions	
7.	[Maxim	num mark: 5]	
	(a)	Define the terms null space and nullity for a $m \times n$ matrix A .	[2]
	(b)	Show that	
	(5)	the nullity of A is equal to the nullity of A^T if and only if A is a square matrix.	[3]
			,
			,

8. [Maximum mark: 5]

Let
$$u = \begin{pmatrix} 2 \\ 3 \\ 5 \end{pmatrix}$$
 and $v = \begin{pmatrix} 1 \\ 5 \\ -1 \end{pmatrix}$.

- (a) Show that u and v are linearly independent, by using the definition. [3]
- (b) Express $w = \begin{pmatrix} 7 \\ 0 \\ 28 \end{pmatrix}$ as a linear combination of u and v. [2]

^	FR 4 :		- 1
9.	[Maximum	mark:	ગ

Let
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

(a)	Find $det(A-I)$	[1]
(α)		L'J

(b)	Solve the equation $XA - A = X$	[4]
(2)	CONTO UNO OQUALIONI 7111 71 71	F.3

10. [Maximum mark: 10]

It is given that $V_1 = \{ \begin{pmatrix} x \\ y \\ 0 \end{pmatrix} | x, y \in R \}$ is a subspace of R^3 .

		(a+2b)		
(a)	Show that $V_2 = \{$	а	$ a, b \in R $ is also a subspace of R^3 .	[4]
		b		

- (c) Describe the subspace $V_1 \cap V_2$ and find its dimension. [2]
- (d) Show that $V_1 \cup V_2$ is **not** a subspace of R^3 . [2]

11. [Maximum mark: 10]

Let

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \\ 5 & 5 & 5 & 0 \end{pmatrix}$$

(a)	Explain why the columns of A are linearly dependent .	[1]
(b)	Find the rank of A .	[2]
(c)	Deduce a conclusion for the rows of $\it A$.	[1]
(d)	Find the column space of A in the simplest form.	[1]
	(2)	
(e)	Find all vectors $X \in \mathbb{R}^4$ such that $AX = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$	[3]
	(3)	

(f) Find all row vectors Y such that $YA^T = \begin{pmatrix} 2 & 2 & 3 \end{pmatrix}$	[2
---	----

12. [Maximum mark: 15]

Let
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$.

- (a) Given that $X = B A^{-1}$ and $Y = B^{-1} A$
 - (i) find X and Y;
 - (ii) does $X^{-1} + Y^{-1}$ have an inverse? Justify your conclusion. [4]
- (b) Prove by induction that $A^n = \begin{pmatrix} 1 & n & \frac{n(n+1)}{2} \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix}$, for $n \in \mathbb{Z}^+$. [6]
- (c) Given that $(A^n)^{-1} = \begin{pmatrix} 1 & x & y \\ 0 & 1 & x \\ 0 & 0 & 1 \end{pmatrix}$, for $n \in \mathbb{Z}^+$,
 - (i) find x and y in terms of n,
 - (ii) hence find an expression for $A^n + (A^n)^{-1}$ [5]
