GROUPS

1. (a) \((a \ast b) \ast c = \left(\frac{ab}{a+b}\right) \ast c = \frac{abc}{a+b + c} = \frac{abc}{ab + ac + bc}\) \(\text{(M1) A1A1}\)

\[a \ast (b \ast c) = a \ast \left(\frac{bc}{b+c}\right) = \frac{abc}{a + \frac{bc}{b+c}} = \frac{abc}{ab + ac + bc}\]

\(\therefore (a \ast b) \ast c = a \ast (b \ast c)\)

so \(*\) is associative. \(\text{AG 7}\)

(b) Suppose \(e\) is an identity element, then \(e \ast a = a \ast e = a\)

\[ea = a\]

\[e + a = a\]

\[ea = ea + a\]

\(ea\) cancels on both sides so there is no solution for \(e\).

i.e. no identity element

\(\text{AG 4}\)

2. (a) \(a \# b = a + b + 1\)

Now \(b \# a = a + b + 1\) \(\text{(M1)}\)

Since + is commutative \(a \# b = b \# a\)

\(\Rightarrow \#\) is also a commutative operation. \(\text{(AG)}\)

\[(a \# b) \# c = (a + b + 1) \# c\]

\[= a + b + 1 + c + 1\]

\[= a + b + c + 2\]

\(a\#(b \# c) = a\#(b + c + 1)\)

\[= a + b + c + 1 + 1\]

\[= a + b + c + 2\]

\(\Rightarrow \#\) is also associative operation. \(\text{(AG)}\) \(\text{4}\)

(b) To show \((\mathbb{R}, \#)\) is a group we need to show closure, identity element exists, inverses exist and it is associative (already shown).

It is closed since \(a + b + 1 \in \mathbb{R}\) for \(a, b \in \mathbb{R}\). \(\text{(A1)}\)

There is a unique element \(e(e \in \mathbb{R})\) such that

\[p \# e = e \# p = p\] where \(p \in \mathbb{R}\)

\[\Rightarrow p + e + 1 = e + p + 1 = p\]

\(\Rightarrow e = -1\) as identity element \(\text{(A1)}\)

There are unique inverse elements for each element in \(\mathbb{R}\) such that

\[p \# p^{-1} = p^{-1} \# p = -1\]

\(\Rightarrow p + p^{-1} + 1 = p^{-1} + p + 1 = -1\)

\(\Rightarrow p^{-1} = -p - 2\)

Hence \((\mathbb{R}, \#)\) forms a group. \(\text{(AG)}\) \(\text{4}\)
3. (a) \(a, b \in T \Rightarrow a \ast b \in T \) \[\text{(A1)}\]
if \(a \ast b = 1, ab - a - b + 2 = 1, \Rightarrow ab - a - b + 1 = 0 \) \[\text{(M1)(A1)}\]
\(\Rightarrow (a - 1)(b - 1) = 0 \Rightarrow a = 1, \) or \(b = 1\) contradiction \[\text{(M1)(R1)}\]
so \(a \ast b \in T, \) i.e. closed \[\text{(AG)}\]

(b)
\[
(x \ast y) \ast z = (xy - x - y + 2) \ast z, \tag{A1}
\]
\[
= xy - x - y + 2, \tag{A1}
\]
\[
= x - y - x, \tag{AG}
\]
\[
x \ast (y \ast z) = x(y - y + z + 2) \tag{A1}
\]
\[
= x - y - x + 2, \tag{A1}
\]
\[
= (x \ast y) \ast z \tag{A1}
\]

Note: as the operation is clearly commutative, there is no need to check both left and right identity, or both left and right inverse below.

(c) \(a \ast e = a \Rightarrow e(a - 1) = 2(a - 1) \Rightarrow e = 2 \) (since \(a \neq 1 \)) \[\text{(M1)(A1)}\]
Hence 2 is the identity element for this operation. \[\text{(A1)}\]

(d) \(a \ast a' = 2 \Rightarrow aa' - a - a' + 2 = 2 \Rightarrow a'(a - 1) = e \Rightarrow a' = a / (a - 1) \) \[\text{M1A1}\]
Hence \(3' = 3/2 \) \[\text{A1}\]

(e) (i) The formula is true for \(n = 1 \) since \(a = (a - 1)^1 + 1 \). \[\text{R1}\]
Assume that it is true for \(n = k \), i.e. \(a \ast a \cdots a = (a - 1)^k + 1 \) \[\text{(M1)}\]
\[
k + 1 \text{ times} \quad a \ast a \cdots a = \left((a - 1)^k + 1 \right) \ast a = \left((a - 1)^k + 1 \right) - a - 2 \tag{M1}
\]
\[
= (a - 1)^k \ast a - (a - 1)^k - 1 - a + 2 \tag{A1}
\]
\[
= (a - 1)^k (a - 1) + 1 \tag{A1}
\]
\[
= (a - 1)^{k+1} + 1 \tag{A1}
\]
so the formula is proven by mathematical induction. \[\text{R1}\]

(ii) We require \(a \ast a \cdots a = 2 \) \[\text{M1}\]
so that \((a - 1)^n + 1 = 2 \) or \((a - 1)^n = 1 \) \[\text{A1}\]
Apart from \(a = 2 \), the identity, the only solution is \(a = 0 \). \[\text{A1}\]
Since \(0 \ast 0 = 2 \), the element 0 has order 2. \[\text{A1}\]

4. (a) Since \(\forall a \in G, e \ast a = a \ast e \) because \(e \) is the identity element of the group. \[\text{R2}\]
Then \(e \in H. \) \[\text{AG}\]
(b) Let \(x, y \in H \), then \(x \ast (y \ast a) = x \ast (y \ast a) \) (by associativity) \[\text{(R1)}\]
\[
= x \ast (a \ast y) \quad \text{(since } y \in H\text{)} \tag{R1}
\]
\[
= (x \ast a) \ast y \quad \text{(associativity)} \tag{R1}
\]
\[
= (a \ast x) \ast y \quad \text{(in } H\text{)} \tag{R1}
\]
\[
= a \ast (x \ast y) \quad \text{(associativity)} \tag{R1}
\]
Therefore, \(x \ast (y \ast a) = a \ast (x \ast y) \)
\[\Rightarrow (x \ast y) \in H. \] \[\text{AG}\]
(c) \[e \cdot a = a \cdot e \] identity \hspace{2cm} (R1)
\[(x^{-1} \cdot x) \cdot a = a \cdot (x^{-1} \cdot x) \] \hspace{2cm} (R1)
\[x^{-1} \cdot (x \cdot a) = (a \cdot x^{-1}) \cdot x \] associativity \hspace{2cm} (R1)
\[x^{-1} \cdot (a \cdot x) = (a \cdot x^{-1}) \cdot x \] \hspace{2cm} (R1)
\[(x^{-1} \cdot a) \cdot x = (a \cdot x^{-1}) \cdot x \] associativity \hspace{2cm} (R1)
Therefore, \[x^{-1} \cdot a = a \cdot x^{-1} \] cancellation law
and \[x^{-1} \in H \] (R1)

FINITE GROUPS – CAYLEY TABLES

5. Closure - yes, because the table contains no other elements. \hspace{2cm} (R1)
Identity - yes, \(d \). \hspace{2cm} (R1)
Inverse - yes, every element has an inverse (or \(d \) appears in every row and column). \hspace{2cm} (R1)
Associativity - no because, \hspace{2cm} (R1)
\[b \cdot (c \cdot e) = (b \cdot c) \cdot e = a \neq e = b \] (AI)

6. (a) **Note:** Award (A3) if one error, (A2) if 2 errors, (A1) if 3 errors, (A0) for more
\[
\begin{array}{cccc}
 a & b & c & d \\
 b & c & d & a \\
 c & d & a & b \\
 d & a & b & c \\
\end{array}
\]
(i) using inverse elements
\[b \cdot x \cdot c \cdot a = d \cdot a \]
\[\Rightarrow b \cdot x = a \] (AI)
\[\Rightarrow d \cdot b \cdot x = d \cdot a \]
\[\Rightarrow x = d \] (AI)
(ii) \[a \cdot (x \cdot b) \cdot c \cdot a = b \cdot a \]
\[\Rightarrow a \cdot (x \cdot b) = c \] (AI)
\[\Rightarrow c \cdot a \cdot (x \cdot b) = c \cdot c \]
\[\Rightarrow x \cdot b = b \] (AI)
\[\Rightarrow x \cdot b \cdot d = b \cdot d \]
\[\Rightarrow x = a \] (AI) 5

7. (a) The operation table is thus:
\[
\begin{array}{cccccccc}
 (*) & 1 & 3 & 4 & 9 & 10 & 12 \\
 1 & 1 & 3 & 4 & 9 & 10 & 12 \\
 3 & 3 & 9 & 12 & 1 & 4 & 10 \\
 4 & 4 & 12 & 3 & 10 & 1 & 9 \\
 9 & 9 & 1 & 10 & 3 & 12 & 4 \\
 10 & 10 & 4 & 1 & 12 & 9 & 3 \\
 12 & 12 & 10 & 9 & 4 & 3 & 1 \\
\end{array}
\]
Note: Award (A3) if one entry is incorrect, (A2) if two entries are incorrect, (AI) if three are incorrect, (A0) if four or more are incorrect.

(b) \(* \) is associative and commutative (known) \hspace{2cm} (A1)
The set is closed under \(* \) \hspace{2cm} (A1)
1 is the identity element \hspace{2cm} (A1)
Every element has an inverse because 1 is on each row (or column). \hspace{2cm} (A1) 4
(c) 1 is of order 1
12 is of order 2
3 and 9 are of order 3
4 and 10 are of order 6

Note: If one answer is wrong, award (A1), if two or more answers are wrong award (A0).

(d) There are four subgroups:
 {1}
 {1, 12} (A1)
 {1, 3, 9} (A2)
 {1, 3, 4, 9, 10, 12}

8.

(a) (i) $3 \otimes 5 = 15$ (A1)
 (ii) $3 \otimes 7 = 5$ (A1)
 (iii) $9 \otimes 11 = 3$ (A1)

(b) (i) The operation table is

<table>
<thead>
<tr>
<th>\otimes</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>11</th>
<th>13</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>9</td>
<td>15</td>
<td>5</td>
<td>11</td>
<td>3</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>15</td>
<td>9</td>
<td>3</td>
<td>13</td>
<td>7</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>11</td>
<td>15</td>
<td>13</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>3</td>
<td>13</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>1</td>
<td>7</td>
<td>13</td>
<td>3</td>
<td>9</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>7</td>
<td>1</td>
<td>11</td>
<td>5</td>
<td>15</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>13</td>
<td>11</td>
<td>9</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: Award (A2) if the circled numbers are correct, (A1) if 3 or 4 are correct, (A0) otherwise. The bold numbers were found in part (a)

(ii) Closure: The table shows that no new elements are generated. (RI)
 Identity: 1 is the identity. (RI)
 Inverse: Every row and column has a “1”. (RI)
 (Associative given).
 So (S, \otimes) is a group. (AG) 5

(c) (i) Elements of order 2 are 7, 9, 15. (A2)

Note: Award (A1) if one correct element is given.

(ii) Elements of order 4 are 3, 5, 11, 13. (MI)(A1)

Note: If no working shown, award (MI)(A0) if one correct element is given. 4

(d) Using 3 as the generator, a sub-group of order 4 is $\{1, 3, 9, 11\}$. (MI)(A1)

Note: Another possibility is $\{1, 5, 9, 13\}$. 2
9. (a) \[(3\times9)\times13 = 13 \times13 = 1\] \hspace{1cm} (M1)
and \[3\times(9\times13) = 3 \times5 = 1\] \hspace{1cm} (M1)
hence \[(3\times9)\times13 = 3\times(9\times13)\] \hspace{1cm} (AG) 2

(b) To show that \((U, \ast)\) is a group we need to show that:

1. \(U\) is closed under \(\ast\). A table is an easy way of showing closure for this finite set.

\[
\begin{array}{ccccccc}
* & 1 & 3 & 5 & 9 & 11 & 13 \\
1 & 1 & 3 & 5 & 9 & 11 & 13 \\
3 & 3 & 9 & 1 & 13 & 5 & 11 \\
5 & 5 & 1 & 11 & 3 & 13 & 9 \\
9 & 9 & 13 & 3 & 11 & 1 & 5 \\
11 & 11 & 5 & 13 & 1 & 9 & 3 \\
13 & 13 & 11 & 9 & 5 & 3 & 1 \\
\end{array}
\]

Note: Award (C4) for a completely accurate table, (C3) for 1 or 2 errors, (C2) for 3 or 4 errors, (C1) for 5 or 6 errors, (C0) for 7 or more errors.

2. Since for each \(a, b \in U\), \(a \ast b \in U\), closure is shown. \hspace{1cm} (C1)
3. Since multiplication is associative, it is true in this case too. \hspace{1cm} (C1)
4. Since \(1 \ast a = a \ast 1 = a\) for all \(a \in U\), 1 is the identity. \hspace{1cm} (C2)
4. Since \(1 \ast a = a \ast 1 = a\) for all \(a \in U\), 1 is the identity. \hspace{1cm} (C1)
3. Since \(1 \ast a = a \ast 1 = a\) for all \(a \in U\), 1 is the identity. \hspace{1cm} (C1)
4. Since \(1 \ast a = a \ast 1 = a\) for all \(a \in U\), 1 is the identity. \hspace{1cm} (C1)
4. 1 appears in each row of the table once, so every element has a unique inverse. \hspace{1cm} (C2)
\[
(1^{-1} = 1, 3^{-1} = 5, 5^{-1} = 3, 9^{-1} = 11, 11^{-1} = 9, 13^{-1} + 13) \hspace{1cm} (C2) 11
\]

(c) (i) If \(G\) is a group and if there exists \(a \in G\), such that
\[
G = \{a^n : n \in \mathbb{Z}\}
\]
Then \(G\) is a cyclic group and \(a\) is called a generator. \hspace{1cm} (C2) 2

(ii) By inspection:
\[
3 \text{ is a generator since:} \hspace{1cm} (M1) \\
3^2 = 9, 3^3 = 13, 3^4 = 11 \hspace{1cm} (A1)
\]
Also, 5 is a generator:
\[
5^2 = 11, 5^3 = 13, 5^4 = 9 \hspace{1cm} (M1) \\
5^5 = 3, 5^6 = 1 \hspace{1cm} (A1)
\]
9 cannot be a generator since \(9^3 = 1\) \hspace{1cm} (C1)

Similarly \(11^3 = 1\) and \(13^2 = 1\). \hspace{1cm} (C1) (C1) 7

(d) Since the order of this group is 6, by Lagrange’s Theorem, the proper subgroups can only have orders 2 or 3. \hspace{1cm} (R1)
Since 13 is the only self inverse \(13^2 = 1\), \hspace{1cm} (R1)
the only subgroup of order 2 is \(\{1, 13\}\) \hspace{1cm} (A1)
No sub-group may include 3 or 5 since these are the generators of the group.
The only elements left are 9 and 11. \hspace{1cm} (R1)
Now, \(9 \ast 11 = 1\), \(9^2 = 11\), and \(11^2 = 9\). \hspace{1cm} (M2)
Therefore, \(\{1, 9, 11\}\) is the other sub-group. \hspace{1cm} (A1) 7
PERMUTATION GROUPS

10. (a) Since \(3! = 6\), order of \(S = 6\). \(\text{(M1) (R1)} 2\)

(b) Members of \(S\) are:

\[p_0 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \quad p_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \quad p_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \quad \text{(AG)} \]

\[p_3 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \quad p_4 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \quad p_5 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \quad \text{(A2) 2} \]

Note: Award \(A2\) for 3 correct permutations; \(A1\) for 2 (A0) for 1

\[p_3 \circ p_4 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \]

\[p_4 \circ p_3 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \]

\(\text{(M1)}\)

\(p_3 \circ p_4 \neq p_4 \circ p_3\) \(\text{(R1) 2}\)

Note: There are other possibilities to show that the group is not Abelian.

(c) \(p_0 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = p_2\)

\[p_3 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = p_0. \quad \text{(M1)} \]

(Note that \(p_0\) is the identity of the group \(S\).)

Hence \(\{p_0, p_1, p_2\}\) form a cyclic group of order 3 under composition. \(\text{(R1) 2}\)

Note: Some candidates may write \(\{p_0, p_1, p_2\}\) is a subgroup of order 3, (award \(A1\)), and write the following table, (award \(R1\)):

\[
\begin{array}{c|cccc}
\circ & p_0 & p_1 & p_2 \\
p_0 & p_0 & p_1 & p_2 \\
p_1 & p_1 & p_2 & p_0 \\
p_2 & p_2 & p_0 & p_1 \\
\end{array}
\]

11. (a) \(\begin{pmatrix} a & b & c & d \\ b & d & a & c \end{pmatrix}\) \(\text{(A1) 1}\)

(b) \(\begin{pmatrix} a & b & c & d \\ a & b & c & d \end{pmatrix}; \begin{pmatrix} a & b & c & d \\ b & a & c & d \end{pmatrix}\) \(\text{(A2) 2}\)

Note: There are many correct answers for the second permutation.

(c) \(\begin{pmatrix} a & b & c & d \\ a & b & c & d \end{pmatrix}\)

\(\begin{pmatrix} a & b & c & d \\ b & c & d & a \end{pmatrix}; \begin{pmatrix} a & b & c & d \\ c & d & a & b \end{pmatrix}; \begin{pmatrix} a & b & c & d \\ d & a & b & c \end{pmatrix}\) \(\text{(A1)(A1)(A1)}\)

Let \(p, q, r, s\) be the four permutations in the subgroup. Closure is shown by the group table, i.e. \(\text{(M1)}\)

\[
\begin{array}{cccc}
p & q & r & s \\
p & p & q & r & s \\
q & q & r & s & p \\
r & r & s & p & q \\
s & s & p & q & r \\
\end{array}
\]

Inverse: each element has an inverse, \(\text{(M1)}\)

i.e. \(p^{-1} = p, q^{-1} = s, r^{-1} = r, s^{-1} = q.\) \(\text{(A1) 7}\)

Note: There are other possible answers.
GROUPS AND RELATIONS (COSETS)

12. (a) \(x^{-1}x = e \in H \Rightarrow x R x \Rightarrow R\) is reflexive

\(x R y \Rightarrow x^{-1}y \in H \Rightarrow (x^{-1}y)^{-1} \in H\)

\(x^{-1}y(x^{-1}y)^{-1} = e\) so \((x^{-1}y)^{-1} = y^{-1}x\)

\(y^{-1}x \in H \Rightarrow y R x \Rightarrow R\) is symmetric

\(x R y\) and \(y R z \Rightarrow x^{-1}y \in H\) and \(y^{-1}z \in H\)

\[\therefore (x^{-1}y)(y^{-1}z) \in H\] since \(H\) is closed.

\(x \in H \Rightarrow x^{-1}z \in H\)

\[\therefore x R z \Rightarrow R\) is transitive.

\(\therefore R\) is an equivalence relation.

(b) \(p^3 = q^2 = e \quad qp = p^2q\)

\[qp^2 = (qp)p = (p^2q)p = p^3(qp) = p^3(pq) = pq\]

\(\therefore \) The equivalence class is \(\{p^2, pq\}\)

OTHERWISE

The equivalence class of \(pq\) is the coset \(pqH\) which contains \(pq\) and \(pqp^2q = ppqq = p^2\).

Extra question

There are 3 equivalence classes (3 cosets)

\[H = \{e, p^2q\}\]

\[pH = \{p, q\}\]

\[p^2H = \{p^2, pq\}\]

ISOMORPHISMS

13. (a) \(f\) is injective since \(f(x) = f(y) \iff > 3^x = 3^y \iff > x = y\)

\(f\) is surjective since \(z \in \mathbb{R}^+, x = \log_3 (z) \in \mathbb{R}\) and \(z = f(x)\)

\(\text{For every } x, y \in (\mathbb{R}, +)\),

\[f(x + y) = 3^{(x + y)} = 3^x 3^y = f(x) \times f(y)\]

\[\therefore f^{-1}(z) = \log_3(z)\]

(b) \(f^{-1}(z) = \log_3(z)\)

14. (a) Since \((a + b\sqrt{2})(c + d \sqrt{2}) = ac + 2bd + (ad + bc)\sqrt{2}\),

and \((ac + 2bd)^2 - 2(ad + bc)^2 = (a^2 - 2b^2)(c^2 - 2d^2) \neq 0\),

\(S\) is closed under multiplication.

\(1 = 1 + 0\sqrt{2}\) is the neutral element.

Finally, \(\frac{a - b\sqrt{2}}{a^2 - 2b^2} \in S\)

\(\frac{a - b\sqrt{2}}{a^2 - 2b^2} (a + b\sqrt{2}) = 1\), so every element of \(S\) has an inverse.
(b) To show that $f(x)$ is an isomorphism, we need to show that it is injective, surjective and that it preserves the operation.

Injection: Let $x_1 = a + b\sqrt{2}, x_2 = c + d\sqrt{2}$

$$f(x_1) = f(x_2) \Rightarrow a - b\sqrt{2} = c - d\sqrt{2} \Rightarrow (a - c) + (d - b)\sqrt{2} = 0 \quad (M1)$$

$\Rightarrow a = c, \text{ and } b = d \Rightarrow x_1 = x_2 \quad (A1)$

Surjection: For every $y = a - b\sqrt{2}$ there is $x = a + b\sqrt{2}$ \quad (M1)(A1)

Preserves operation:

$$f(x_1 x_2) = f((a + b\sqrt{2})(c + d\sqrt{2})) = f(ac + 2bd + ad + bc)\sqrt{2} \quad (M1)$$

$$= ac + 2bd - (ad + bc)\sqrt{2} = (a - b\sqrt{2})(c - d\sqrt{2}) \quad (M1)$$

$$f(a + b\sqrt{2})f(c + d\sqrt{2}) = (f(x_1))(f(x_2))$$

15. (a)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

(b)

<table>
<thead>
<tr>
<th>(*)</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>c</td>
<td>d</td>
<td>c</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>d</td>
<td>c</td>
<td>d</td>
<td>b</td>
<td>a</td>
</tr>
</tbody>
</table>

Notes: There are many other correct solutions, with a different ordering

Award (A4) if all entries are correct, (A3) if all but 1 entry are correct, (A2) if all but 2 entries are correct, (A1) if all but 3 entries are correct.

16. (a)

<table>
<thead>
<tr>
<th>o</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>j</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>f</td>
<td>g</td>
<td>h</td>
<td>j</td>
</tr>
<tr>
<td>g</td>
<td>g</td>
<td>f</td>
<td>j</td>
<td>h</td>
</tr>
<tr>
<td>h</td>
<td>h</td>
<td>j</td>
<td>f</td>
<td>g</td>
</tr>
<tr>
<td>j</td>
<td>j</td>
<td>h</td>
<td>g</td>
<td>f</td>
</tr>
</tbody>
</table>

Note: Award (A3) for all correct, (A2) for 1 error, (A1) for 2 errors, (A0) otherwise.

(b) for $+_4$, the identity is 0, 1 has order 4, 2 has order 2 and 3 has order 4, \quad (A1)

for \times_5, the identity is 1, 2 has order 4, 3 has order 4 and 4 has order 2, \quad (A1)

Hence $+_4$ is isomorphic with \times_5. \quad (A1)

Corresponding elements are

$$0 \leftrightarrow 1, 1 \leftrightarrow 2, 2 \leftrightarrow 4, 3 \leftrightarrow 3, \text{ OR } 0 \leftrightarrow 1, 1 \leftrightarrow 3, 2 \leftrightarrow 4, 3 \leftrightarrow 2. \quad (A1)$$

Note: Corresponding elements must be correct for final (A1).
17. (a) By using the composition of functions we form the Cayley table

\[\begin{array}{c|cccc}
\circ & f_1 & f_2 & f_3 & f_4 \\
\hline
f_1 & f_1 & f_2 & f_3 & f_4 \\
f_2 & f_2 & f_1 & f_4 & f_3 \\
f_3 & f_3 & f_4 & f_1 & f_2 \\
f_4 & f_4 & f_3 & f_2 & f_1 \\
\end{array}\]

Note: For each error in the above table deduct one mark up to a maximum of three marks.

From the table, we see that \((T, \circ)\) is a closed and is commutative. \((R1)\)

\(f_i\) is the identity. \((A1)\)

\(f_i^{-1} = f_i, i = 1, 2, 3, 4.\) \((A1)\)

Since the composition of functions is an associative binary operation an Abelian group. \((AG)\)

(b) The Cayley table for the group \((G, \diamond)\) is given below:

\[\begin{array}{c|cccc}
\diamond & 1 & 3 & 5 & 7 \\
\hline
1 & 1 & 3 & 5 & 7 \\
3 & 3 & 1 & 7 & 5 \\
5 & 5 & 7 & 1 & 3 \\
7 & 7 & 5 & 3 & 1 \\
\end{array}\]

Note: For each error in the entries deduct one mark up to a maximum of two marks.

Define \(f: T \mapsto G\) such that \(f(f_1) = 1, f(f_2) = 3, f(f_3) = 5\) and \(f(f_4) = 7\) \((M1)\)

Since distinct elements are mapped onto distinct images, it is a bijection. \((R1)\)

Since the two Cayley tables match, the bijection is an isomorphism. \((R1)\)

Hence the two groups are isomorphic. \((AG)\)

18. (a) \(B\) is the set \(\{1, i, -1, -i\}\) \((A1)\)

This set is closed under multiplication.

Associative, since it is normal complex number multiplication. \((R1)\)

The identity element is 1. \((R1)\)

The inverse of \(i\) is \(-i\), and vice versa, 1 and \(-1\) are self inverses. \((R1)\)

(b) \[\begin{array}{c|cccc}
\times & 1 & 3 & 7 & 9 \\
\hline
1 & 1 & 3 & 7 & 9 \\
3 & 3 & 9 & 1 & 7 \\
7 & 7 & 1 & 9 & 3 \\
9 & 9 & 7 & 3 & 1 \\
\end{array}\]

(c) Order of 1 is 1

Order of 3 is 4, since \(3^4 = 1\) \((A1)\)

Order of 7 is 4, since \(7^4 = 1\) \((A1)\)

Order of 9 is 2, since \(9^2 = 1\) \((A1)\)

(d) The two groups will have a bijection in which the following correspond:

\(1 \leftrightarrow 1, 3 \leftrightarrow i, 7 \leftrightarrow i, \text{ and } 9 \leftrightarrow -1\) \((\text{or } 3 \leftrightarrow -i, 7 \leftrightarrow i)\) \((A1)\)

Both groups have the same structure, the bijection preserves the operation. \((R1)\)
19.

(a)

\[
\begin{array}{|c|c|c|c|}
\hline
& U & H & V \\
\hline
U & U & H & V \\
H & H & U & K \\
V & V & K & U \\
K & K & V & H \\
\hline
\end{array}
\]

Note: (A4) for 15-16 correct entries, (A3) for 13-14, (A2) for 11-12, (A1) for 9-10, (A0) o/w

(b) Closure: \(U, H, K \) and \(V \) are the only entries in the table. So it is closed. (A1)
Identity: \(U \), since \(UT = TU = T \) for all \(T \) in \(S \). (A1)
Inverses: \(U^{-1} = U, H^{-1} = H, V^{-1} = V, K^{-1} = K \) (A1)
Associativity: Given (AG)
Hence \((S, \circ) \) forms a group. (R1) 4

(c) \(C = \{1, -1, i, -i\} \)

\[
\begin{array}{|c|c|c|c|}
\hline
\circ & 1 & -1 & i & -i \\
\hline
1 & 1 & -1 & i & -i \\
-1 & -1 & 1 & -i & i \\
1 & 1 & -i & -1 & 1 \\
-i & i & 1 & -1 \\
\hline
\end{array}
\]

Note: Award (A3) for 15-16 correct entries, (A2) for 13-14, (A1) for 11-12, (A0) for fewer

(d) Suppose \(f: S \rightarrow C \) is an isomorphism.
Then \(f(U) = 1 \), the identity in \(C \), since \(f \) preserves the group operation. (M1)(C1)
Assume \(f(H) = i, 1 = f(U) = f(H \circ H) = f(H) \circ f(H) \). (A1)
But \(f(H) = i \), and \(i \) is not its own inverse, so \(f \) is not an isomorphism. (R1) 4

Note: Accept other correctly justified solutions.
THEORETICAL

20. Let \(a^{-1} = b \) (M1)
Then \(e = b \times a = b \times a \times a \) (M1)
so that \(e = (b \times a) \times a = e \times a \) (M1)
and therefore \(e = a \) (M1)(AG)

Note: There are other correct solutions.

21. (a) If \(G \) is a group and \(H \) is a subgroup of \(G \) then the order of \(H \) is a divisor of the order of \(G \). (A2) 2
(b) Since the order of \(G \) is 24, the order of \(a \) must be 1, 2, 3, 4, 6, 8, 12 or 24 (R2)
The order cannot be 1, 2, 3, 6 or 12 since \(a^{12} \neq e \) (R1)
Also \(a^8 \neq e \) so that the order of \(a \) must be 24 (R1)
Therefore, \(a \) is a generator of \(G \), which must therefore be cyclic. (R1) 5

22. (a) A cyclic group is a group which is generated by one of its elements (or words to that effect). (M2) 2
(b) We can assume that \((G, \#)\) has at least two elements and hence contains an element, say \(b \), which is different from \(e \), its identity. (R1)
The order of \(b \) is equal to the order \(q \) of the subgroup it generates. (M1)
By Lagrange’s theorem \(q \) must be a factor of \(p \) and since \(p \) is prime either \(q = 1 \) or \(q = p \). (R1)
Since \(b \neq e \) we see that \(q \neq 1 \) and therefore \(q = p \). (R1)
But if the order of \(b \) is \(p \) then \(b \) generates \((G, \#)\) which is therefore cyclic. (R1) 5

23.
For \(a \in H \), \(a^{-1} \ast a = e \in H \) so \(H \) contains the identity. (A1)
For \(a \in H \), \(a^{-1} \ast a = a^{-1} \in H \) so \(H \) contains all the inverse elements. (A1)
\(\ast \) is associative on \(G \) and therefore on \(H \). (A1)
For \(a, b \in H \), \(a^{-1} \ast b = a^{-1} \ast b = a \ast b \in H \) so closure confirmed. (A1) (A1)
The four requirements are satisfied so \((H, \ast)\) is a subgroup. (R1)

24. Consider \(a \ast b \). This cannot be \(a \) or \(b \) since \(a \ast b = a \Rightarrow b = e \) which is not the case and similarly for \(b \). So \(a \ast b = \) either \(e \) or \(c \). (M1)
If \(a \ast b = e \), then \(a, b \) form an inverse pair so \(b \ast a = e \). (R1)
Suppose \(a \ast b = c \). Consider \(b \ast a \). As before, this cannot equal \(a \) or \(b \) and it cannot equal \(e \) either because that would imply that \(a \ast b = e \) which it is not. (R1)
It follows that \(b \ast a = c \). (R1)
Thus in both cases, \(a \ast b = b \ast a \). (R1)

25. Given \((G, \ast)\) is a cyclic group with identity \(e \) and \(G \neq \{e\} \) and \(G \) has no proper subgroups.
If \(G \) is of composite finite order and is cyclic, then there is \(x \in G \) such that \(x \) generates \(G \). (R1)
If \(|G| = p \times q, p, q \neq 1 \), then \(\langle x^q \rangle \) is a subgroup of \(G \) of order \(q \) which is impossible since \(G \) has no non-trivial proper subgroup. (M1)
Suppose the order of \(G \) is infinite. Then \(\langle x^2 \rangle \) is a proper subgroup of \(G \) which contradicts the fact that \(G \) has no proper subgroup. (A1)
So \(G \) is a finite cyclic group of prime order. (R1)
26. If one of the sets H and K is contained in the other then either $H \cup K = H$ or $H \cap K = K$.
In either case it is a subgroup of (G, \cdot).

Only if:

Conversely, suppose that $(H \cup K, \cdot)$ is a subgroup of (G, \cdot) and that H
is not contained in K.
Let a be any element of K.

Then $ab \in H \cup K$ (since $(H \cup K, \cdot)$ is a group).

If $ab \in K$ then $b = a^{-1}ab \in K$ which is a contradiction of our hypothesis.

Hence $ab \not\in K$ and therefore $ab \not\in H$ so that $abb^{-1} \in H$
which shows that $K \subseteq H$ since a was any element of K.

Therefore $H \subseteq K$ or $K \subseteq H$. (AG)

OR

Proof by contradiction: (M1)

If $K \not\subset H$ then there exists $m \in K, m \not\in H$ (C1)

And

If $H \not\subset K$ then there exists $n \in H, n \not\in K$. (C1)

Suppose $m \cdot n \in H$ then $m \cdot n \cdot n^{-1} \in H$ is a contradiction (C1)

Suppose $m \cdot n \not\in K$ then $n = m^{-1} \cdot m \cdot n \in K$ is a contradiction (C1)

Hence $m \cdot n \not\in H \cup K$ a contradiction (C1)

Therefore $H \subseteq K$ or $K \subseteq H$ (AG) 8

27. (a) Let (G, \cdot) and (H, \bullet) be two groups. They are said to be isomorphic
if there exists a one-to-one transformation $f : G \to H$ which is

surjective (onto) with the property that for all $x, y \in G, f(x \cdot y) = f(x) \bullet f(y)$. (C1)

Note: Some candidates may say that the groups (G, \cdot) and (H, \bullet)
are isomorphic if they have the same Cayley table (or group
table). In that case award (C1).

(b) Since $f : G \rightarrow H, f(x) \in H$ for some $x \in G$.

Since e' is the identity element in H,

$e' \bullet f(x) = f(x) = f(x \cdot e) = f(e) \bullet f(x)$. (M1)(A1)

By the right cancellation law, $e' = f(e)$. (M1) 4

(c) Suppose $G = \langle a \rangle$, the cyclic group generated by a, i.e. n is the
smallest positive integer such that $a^n = e$, the identity in G.

Let $f : G \rightarrow H$ be an isomorphism. Let $f(a) = b \in H$.

$f(a^2) = f(a \cdot a) = f(a) \bullet f(a) = (f(a))^2$. (M1)

In general $f(a^m) = (f(a))^m, 1 \leq m \leq n$. (A1)

By (iii) (b) $(f(a))^n = e'$, the identity in H. Hence $b^n = e'$ and consequently H is a cyclic group of order n with generator b. (R1) 4
28. (a) Suppose a is of order n and is a^{-1} of order m.
Therefore $e = e * e = (a^{-1})m * a^n$
(M1)

If $m > n$, then $e = (a^{-1})m * n * (a^{-1})p * a^n = (a^{-1})m - n * (a^{-1} * a)^n$.
(M1)

Hence $e = (a^{-1})m - n$. This implies a^{-1} is of order $m - n < m$
which is a contradiction. So m is not greater than n.
(R1)

If $m < n$, $e = (a^{-1})m * a^n * a^{-m} = (a^{-1} * a)^m * a^{-m}$
(M1)

Hence $e = a^{-m}$, which implies a is of order $n - m < n$.
This is a contradiction.
(R1)

Therefore $m = n$.
(AG) 5

(b) Let $S(m)$ be the statement: $b^n = p^{-1} * a^n * p$.

$S(1)$ is true since we are given $b = p^{-1} * a * p$
(A1)

Assume $S(k)$ as the induction hypothesis.
(M1)

$k^{k+1} = b^k * b = (p^{-1} * a^k * p) * (p^{-1} * a * p) = p^{-1} * a^{k+1} * p$
(M1)(R1)

which proves $S(k + 1)$.

Hence, by mathematical induction $b^n = p^{-1} * a^n * p$ ($n = 1, 2, \ldots$).
(AG) 4

29. (a) $(xy)^2 = e$
Order of $xy = 2$
(M1)

$\Rightarrow (xy)(xy) = e \Rightarrow x(yx)y = e$
Associative property
(M1)(M1)

$\Rightarrow xx(yx)y = xey$
Left and right–multiply
(M1)

$\Rightarrow e(yx)e = xy$
Order of elements given
(M1)

$\Rightarrow yx = xy$
(AG)

OR

Since x, y and xy are self–inverses, $x^{-1} = x$, $y^{-1} = y$ and $(xy)^{-1} = xy$
(R1)(R1)

Consider $xy = (xy)^{-1}$
(M1)

$= y^{-1}x^{-1}$
(M1)

$= yx$
(M1)(AG) 5

(b) Let a be any element of a group, whose identity is e.

Let a^{-1} be an inverse of a, and let b be another inverse of a different from a^{-1}.

Now, $b = be = b(aa^{-1}) = (ba)a^{-1}$; identity and associativity properties,
(M1)

then, $b = ea^{-1} = a^{-1}$, which contradicts the assumption that $b \neq a^{-1}$,
(M1)

therefore there is only one inverse of a, namely a^{-1}.
(R1)

OR

Let a be any element of a group whose identity is e. Let b and c be
(M1)

inverses of a, so that $ab = ba = e$.
Consider $b = b(ac)$

$= (ba)c$
(M1)

$= c$
(M1)

Thus any two inverses are equal, so the inverse is unique.
(R1) 3

(c) If G is Abelian, then $f(xy) = (xy)^{-1} = y^{-1}x^{-1} = x^{-1}y^{-1} = f(x)f(y)$ and f
is an isomorphism.
(M1)(R1)

If f is an isomorphism, then $f(xy) = f(x)f(y)$, that is,
$(xy)^{-1} = x^{-1}y^{-1} = (yx)^{-1}$
Then $xy = yx$
(M1)

and hence G is Abelian.
(R1) 4

[9]