HAEF IB – FURTHER MATH HL
TEST 2
SETS, RELATIONS AND GROUPS
by Christos Nikolaidis

Name: ______________________________________

Date: 8/12/2017

Questions

1. [Maximum mark: 10]
 The binary operation \(* \) is defined on \(\mathbb{N} \) by \(a * b = 1 + ab \).
 Determine whether or not \(* \)
 (a) is closed; [2 marks]
 (b) is commutative; [2 marks]
 (c) is associative; [3 marks]
 (d) has an identity element. [3 marks]

2. [Maximum mark: 8]
 The elements of sets \(P \) and \(Q \) are taken from the universal set \(\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} \). \(P = \{1, 2, 3\} \) and \(Q = \{2, 4, 6, 8, 10\} \).
 (a) Given that \(R = (P \cap Q)' \), list the elements of \(R \). [3 marks]
 (b) For a set \(S \), let \(S' \) denote the set of all subsets of \(S \),
 (i) find \(P' \); [5 marks]
 (ii) find \(n(R') \). [5 marks]
3. [Maximum mark: 13]

The function \(f : \mathbb{R} \to \mathbb{R} \) is defined by

\[
f(x) = \begin{cases}
2x + 1 & \text{for } x \leq 2 \\
2x^2 - 2x + 5 & \text{for } x > 2.
\end{cases}
\]

(a) (i) Sketch the graph of \(f \).

(ii) By referring to your graph, show that \(f \) is a bijection. [5 marks]

(b) Find \(f^{-1}(x) \). [8 marks]

4. [Maximum mark: 13]

The relation \(R \) is defined on \(\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\} \) by \(aRb \) if and only if \(a(a+1) \equiv b(b+1)(\text{mod} 5) \).

(a) Show that \(R \) is an equivalence relation. [6 marks]

(b) Show that the equivalence defining \(R \) can be written in the form

\[
(a - b)(a + b + 1) \equiv 0(\text{mod} 5).
\]

(c) Hence, or otherwise, determine the equivalence classes. [4 marks]

5. [Maximum mark: 10]

(a) The function \(g : \mathbb{Z} \to \mathbb{Z} \) is defined by \(g(n) = |n| - 1 \) for \(n \in \mathbb{Z} \). Show that \(g \) is neither surjective nor injective. [2 marks]

(b) The set \(S \) is finite. If the function \(f : S \to S \) is injective, show that \(f \) is surjective. [2 marks]

(c) Using the set \(\mathbb{Z}^+ \) as both domain and codomain, give an example of an injective function that is not surjective. [3 marks]

(d) Using the set \(\mathbb{Z}^+ \) as both domain and codomain, give an example of a surjective function that is not injective. [3 marks]
6. \textbf{[Maximum mark: 12]}

The binary operation Δ is defined on the set $S = \{1, 2, 3, 4, 5\}$ by the following Cayley table.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

(a) State whether S is closed under the operation Δ and justify your answer. \hspace{1cm} [2]

(b) State whether Δ is commutative and justify your answer. \hspace{1cm} [2]

(c) State whether there is an identity element and justify your answer. \hspace{1cm} [2]

(d) Determine whether Δ is associative and justify your answer. \hspace{1cm} [3]

(e) Find the solutions of the equation $a\Delta b = 4\Delta b$, for $a \neq 4$. \hspace{1cm} [3]

7. \textbf{[Maximum mark: 19]}

Consider the set S defined by $S = \{s \in \mathbb{Q} : 2s \in \mathbb{Z}\}$.

You may assume that $+$ (addition) and \times (multiplication) are associative binary operations on \mathbb{Q}.

(a) (i) Write down the six smallest non-negative elements of S.

(ii) Show that $\{S, +\}$ is a group.

(iii) Give a reason why $\{S, \times\}$ is not a group. Justify your answer. \hspace{1cm} [9]

(b) The relation R is defined on S by $s_1 R s_2$ if $3s_1 + 5s_2 \in \mathbb{Z}$.

(i) Show that R is an equivalence relation.

(ii) Determine the equivalence classes. \hspace{1cm} [10]
8. [Maximum mark: 15]

Sets X and Y are defined by $X =]0, 1[; Y = \{0, 1, 2, 3, 4, 5\}$.

(a) (i) Sketch the set $X \times Y$ in the Cartesian plane.

(ii) Sketch the set $Y \times X$ in the Cartesian plane.

(iii) State $(X \times Y) \cap (Y \times X)$. [5]

Consider the function $f : X \times Y \to \mathbb{R}$ defined by $f(x, y) = x + y$
and the function $g : X \times Y \to \mathbb{R}$ defined by $g(x, y) = xy$.

(b) (i) Find the range of the function f.

(ii) Find the range of the function g.

(iii) Show that f is an injection.

(iv) Find $f^{-1}(\pi)$, expressing your answer in exact form.

(v) Find all solutions to $g(x, y) = \frac{1}{2}$. [10]