MATH HL - OPTION CALCULUS SOLUTIONS 1. CONTINUITY AND DIFFERENTIABILITY

Compiled by Christos Nikolaidis

A. Practice questions

1. Look at the site!

2.		Continuous	Differentiable
	f	everywhere	not at $x = -2$
	h	not at $x = 1$	not at $x = 1$
	p	everywhere	not at $x = \pi/2$

	Continuous	Differentiable
g	everywhere	not at $x = -1$
k	everywhere	not at $x = 2$
q	everywhere	everywhere

B. Past paper questions

3.		
(a)	consider upper or lower limits	M1
	$\lim_{x \to 0^-} f'(x) = \lim_{x \to 0^+} 1 = 1 (= f(0)), \lim_{x \to 0^+} f'(x) = \lim_{x \to 0^+} (1 - x) = 1 (= f(0))$	A1
	$\lim_{x \to 0^+} f'(x) = \lim_{x \to 0^-} f(x) \text{ so } f \text{ is continuous}$	AG
	1 1	[2 marks]
(b)	$\lim_{h \to 0^-} \frac{1-1}{h} = 0$	M1A1
	$\lim_{h \to 0^+} \frac{1 - h - 1}{h} = \lim_{h \to 0^+} (-1) = -1$	A1
No	ote: Award <i>M1</i> for an attempt to find limits in either case.	

$$\lim_{h \to 0^+} \frac{f(0+h) - f(0)}{h} \neq \lim_{h \to 0^-} \frac{f(0+h) - f(0)}{h} \text{ so } f \text{ is not differentiable} \qquad \textbf{AG}$$

Note: Award M1A1A0 for correct differentiation of left and right sides, ONLY if limits then used to show that both functions have different limits.

4.

(a)	we note that $f(0) = 0$, $f(x) = 3x$ for $x > 0$ and $f(x) = x$ for $x < 0$		
	$\lim_{x \to 0^{\circ}} f(x) = \lim_{x \to 0^{\circ}} x = 0$	MIAI	
	$ \lim_{x \to 0^{\circ}} f(x) = \lim_{x \to 0^{\circ}} 3x = 0 $	AI	
	since $f(0) = 0$, the function is continuous when $x = 0$	AG	
	$\lim_{h \to 0^-} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0^-} \frac{h}{h} = 1$	M1A1	
	$\lim_{h \to 0^+} \frac{f(0+h) - f'(0)}{h} = \lim_{h \to 0^+} \frac{3h}{h} = 3$	A1	
	these limits are unequal	R1	
	so f is not differentiable when $x = 0$	AG	
			[7 marks]
(b)	$\int_{-a}^{a} f(x) \mathrm{d}x = \int_{-a}^{0} x \mathrm{d}x + \int_{0}^{a} 3x \mathrm{d}x$	M1	
	$= \left[\frac{x^2}{2}\right]_{-a}^{0} + \left[\frac{3x^2}{2}\right]_{0}^{a}$	Al	
	$=a^{2}$	A1	
			[3 marks]

5.			
(a) li	$\lim_{x \to a^{-x^{2}}} \left(-x^{3} + 2x^{2} + x \right) = \lim_{x \to a^{-}} (ax + b) (= a + b)$	M1	
24	$e^{-1} = a + b$	41	
di	fferentiability: attempt to differentiate both expressions	M1	
f	$'(x) = -2xe^{-x^2}\left(-x^3 + 2x^2 + x\right) + e^{-x^2}\left(-3x^2 + 4x + 1\right) (x < 1)$.41	
(0	$f'(x) = e^{-x^2} \left(2x^4 - 4x^3 - 5x^2 + 4x + 1 \right) $		
ſ	'(x) = a (x > 1)	41	
su	bstitute $x = 1$ in both expressions and equate		
-	$2e^{-1} = a$	A1	
su	bstitute value of a and find $b = 4e^{-1}$	MIAI	
			[8 marks]

6.

(a) f continuous $\Rightarrow \lim_{x \to 2^-} f(x) = \lim_{x \to 2^+} f(x)$	M1
4a + 2b = 8	<u>A1</u>
$f'(x) = \begin{cases} 2, & x < 2\\ 2ax + b, & 2 < x < 3 \end{cases}$	A1
f' continuous $\Rightarrow \lim_{x \to 2^-} f'(x) = \lim_{x \to 2^+} f'(x)$	
4a + b = 2	AI
solve simultaneously	M1
to obtain $a = -1$ and $b = 6$	A1
	[6 marks]

		[3 marks]	
	therefore one-to-one	AG	
	since $f'(x) > 0$ for all values in the domain of f, f is increasing	R1	
	for $2 < x < 3$, $f'(x) = -2x + 6 > 0$	A1	
(b)	for $x \le 2$, $f'(x) = 2 > 0$	AI	

(c)
$$x = 2y - 1 \Rightarrow y = \frac{x+1}{2}$$
 M1
 $x = -y^2 + 6y - 5 \Rightarrow y^2 - 6y + x + 5 = 0$ *M1*

$$x = -y^{2} + 6y - 5 \Longrightarrow y^{2} - 6y + x + 5 = 0$$

$$y = 3 \pm \sqrt{4 - x}$$

therefore

$$f^{-1}(x) = \begin{cases} \frac{x+1}{2}, & x \le 3\\ 3-\sqrt{4-x}, & 3 < x < 4 \end{cases}$$
 AlAIAI

Note: Award A1 for the first line and A1A1 for the second line.

[5 marks]

7.

(b) given continuity at
$$x = 5$$

 $5c + 2 = 16 - \frac{35}{5} \Rightarrow c = \frac{7}{5}$
MIA1 [2 marks]

(ii) any value ≥16

Note: Accept values less than 16 if fully justified by reference to the maximum age for a dog.

(d)
$$\lim_{h \to 0^{-}} \left(\frac{\frac{7}{5}(5+h) + 2 - \frac{7}{5}(5) - 2}{h} \right) = \frac{7}{5}$$
 MIA1
$$\lim_{h \to 0^{+}} \left(\frac{16 - \frac{35}{5+h} - 16 + \frac{35}{5}}{h} \right) \left(= \lim_{h \to 0^{+}} \left(\frac{-35}{5+h} + 7}{h} \right) \right)$$

$$= \lim_{h \to 0^{+}} \left(\frac{-35 + 35 + 7h}{(5+h)}{h} \right) = \lim_{h \to 0^{+}} \left(\frac{7}{5+h} \right) = \frac{7}{5}$$
 MIA1

both limits equal so differentiable at t = 5

R1AG

AI

[2 marks]

Note: The limits $t \to 5$ could also be used. For each value of $\frac{7}{5}$ obtained by standard differentiation award A1. To gain the other 4 marks a rigorous explanation must be given on how you can get from the left and right hand derivatives to the derivative.

Note: If the candidate works with t and then substitutes t = 5 at the end award as follows First *M1* for using formula with t in the linear case, *A1* for $\frac{7}{5}$ Award next 2 method marks even if t = 5 not substituted, *A1* for $\frac{7}{5}$

[6 marks]